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Abstract. The values of the fundamental constants such as µ = mP/me, the proton to elec-
tron mass ratio and α, the fine structure constant, are sensitive to the product

√
ζ2

x (w + 1)
where ζx is a coupling constant between a rolling scalar field responsible for the acceleration
of the expansion of the universe and the electromagnetic field with x standing for either µ or
α. The dark energy equation of state w can assume values different than −1 in cosmologies
where the acceleration of the expansion is due to a scalar field. In this case the value of both
µ and α changes with time. The values of the fundamental constants, therefore, monitor the
equation of state and are a valuable tool for determining w as a function of redshift. In fact
the rolling of the fundamental constants is one of the few definitive discriminators between
acceleration due to a cosmological constant and acceleration due to a quintessence rolling
scalar field. w is often given in parameterized form for comparison with observations. In this
manuscript the predicted evolution of µ, is calculated for a range of parameterized equation
of state models and compared to the observational constraints on ∆µ/µ. We find that the cur-
rent limits on ∆µ/µ place significant constraints on linear equation of state models and on
thawing models where w deviates from −1 at late times. They also constrain non-dynamical
models that have a constant w not equal to −1. These constraints are an important com-
pliment to geometric tests of w in that geometric tests are sensitive to the evolution of the
universe before the epoch of observation while fundamental constants are sensitive to the
evolution of the universe after the observational epoch. Recent low redshift radio limits on
∆µ/µ provide the most significant constraints on the late time evolution of w.
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1. Introduction

The apparent acceleration of the expansion of
the universe (Riess et al. 1998; Perlmutter et
al. 1999) has spurred considerations of new
physics and cosmologies beyond the standard
model of physics and the ΛCDM cosmology.
Since the fundamental constants such as the
electromagnetic fine structure constant α = e2

~c ,
the proton to electron mass ratio µ =

mp

me
and

the gravitational fine structure constant Gmpme

~c
determine the quantitative nature of physics it
is natural to check for time variations of these
constants as an indicator of physics and cos-
mologies beyond the standard models. Rolling
constants are one of the few definitive predic-
tions of quintessence cosmologies that separate
them from standard general relativity cosmo-
logical constant cosmologies.



Thompson: Fundamental constants 21

Fig. 1. Observational constraints on ∆µ/µ from ra-
dio (z < 1) and optical (z > 1) observations. All
constraints are at the 1σ level except the radio con-
straint at z = 0.6847 which is 3σ.. The radio con-
straint at z = 0.8858 is difficult to see at this scale
but its value is ±1 × 10−7.

2. Observational constraints

The observational constraints on ∆µ/µ are
shown in Figure 1 at the observed redshifts.
Table 1 gives the redshifts, constraints, accu-
racy and references for the observations. At the
scale of the figure the constraint at z = 0.88582
is difficult to see but its value is ±1 × 10−7.
These constraints are the tightest published
bounds for an object which may have several
published constraints. The constraints at red-
shifts less than 1 are both radio observations
while the remainder are from optical observa-
tions.

3. Relation between w and µ

The standard cosmology with a cosmological
constant Λ predicts a very simple form of the
dark energy equation of state, w = −1. Long
standing difficulties in equating Λ with the par-
ticle physics vacuum energy (Weinberg 1989)
has led to the consideration of other cosmolo-
gies with different values of w that can also
evolve with time. Many of these cosmologies
invoke a rolling scalar field φ that also couples
with the electromagnetic field. For cosmolo-
gies where a single rolling scalar field couples
with both the gravitational and electromagnetic
fields Thompson (2012), utilizing the work of

Nunes & Lidsey (2004), Avelino et al. (2006)
and Dutta & Scherrer (2011), showed that the
change in µ is related to the EoS w and the cou-
pling ζµ by

(w + 1)ζ2
µ =

(µ′/µ)2

3Ωφ
(1)

where ’ indicates the derivative with respect to
the log of the scale factor a, ln(a). The evolu-
tion of µ is given by the integral

∆µ

µ
= ζµ

∫ a

1

√
3Ωφ(x)(w(x) + 1)x−1dx (2)

which can be numerically integrated
(Thompson 2012). When w is very close
to −1 the ratio of the dark energy density to
the critical density is well approximated by

Ωφ = [1 + (Ω−1
φ0 − 1)a−3]−1 (3)

When the value of w is significantly different
than −1, however, we use the more accurate
form

Ωφ(a) = [1 + (Ω−1
φ0 − 1)a−3 × (4)

exp(3
∫ a

1

(1 + w(x))
3

dx)]−1

For any given equation of state w we can
then predict the change in µ as a function of
the scale factor a under the assumption that w
evolves due to a rolling scalar field that is cou-
pled to µ with a coupling constant given by ζµ.
Also note that both equation 1 and equation 2
indicate that even a stationary value of w can
cause µ to vary if the value is different from −1.
The same statement is true for α.

In this work we examine the evolution of
µ for some common paramaterizations of the
EOS. As a benchmark we utilize a minimum
expected value of ζµ of 4 × 10−6. This value
accepts the minimum expected value for ζα of
10−7 from Nunes & Lidsey (2004) multiplied
by the expected ratio of ∆µ/µ to ∆α/α of 40-50
(Avelino et al. 2006). Note that the minimum
ζα is calculated by assuming that the reported
∆α/α ≈ 10−5 Webb et al. (2011) is real. If it is
not then ζµ has no definite lower bound.
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4. Equations of state

Several forms of the equation of state w
are listed in DeFelice, Nesseris & Tsujikawa
(2012), herinafter DNT, which include the
CPL or Chevallier-Polarski-Linder parameter-
ization (Chevallier and Polarski 2001; Linder
2003)

w(a) = w0 + w1(1 − a) (5)

where we also consider the case where w1 = 0
for values of w0 not equal to −1.

DNT also consider three more parametriza-
tions labeled Models 1 through 3. Here we only
consider Model 1 where

w(a) = w f +
wp − w f

1 + (a/at)1/τ (6)

where w f is a future value of w, wp is a past
value of w, a is the scale parameter, at is a tran-
sition epoch and τ characterizes the transition
time. For the purposes of this work Model 1
is considered general enough to represent most
behaviors of w.

4.1. Constant and linear equations of
state

From equation 2 it is obvious that the observed
constraints on ∆µ/µ can be met for any EoS by
simply lowering the value of ζµ. This frees up
cosmological parameter space at the expense
of further limiting the new physics parameter
space. We will use our benchmark ζµ to evalu-
ate the different EOS parameters with the full
knowledge that it is based on the reported value
of ∆α/α ≈ 10−5

4.1.1. Constant EoS models

As noted at the end of Section 3 any devia-
tion of w from −1 even if its value is constant
will produce a time variation of µ. The magni-
tude of the variation depends on the range of
the scale factors a where w deviates from −1
and the magnitude of the deviation. Constant
EoS models are CPL models with w1 = 0. We
investigate four different constant EoS models,
w = −0.6,−0.8,−0.9,−0.999. Figure 2 shows
the evolution of ∆µ/µ for the constant EoS

Fig. 2. Values of ∆µ/µ versus redshift for constant
value EoS models with the values labled in the plot.
In this and subsequent plots we leave in the higher
redshift constraints even though they are off scale
just to show that they are met.

cases. Since these models have values of w dif-
ferent from −1 for all scale factors they show
significant evolution of µ. Only the w = −0.999
case matches the low redshift ∆µ/µ constraints
which indicates that most constant EoS models
are highly disfavored. This is consistent with
the previous work of Thompson (2013) that
concluded that w must be within 0.001 of −1
between a redshift of 0.88582 and the present
day, a time on the order of half of the age of
the universe. Since we denote a change in µ as
a difference between the value of µ at a given
redshift and its value today a ∆µ/µ observation
constrains the evolution of w between the scale
factor of the observation and the scale factor
now, taken to be 1. This is an example of how
a non-geometrical test of the EoS can be very
sensitive to models that would be difficult to
discriminate against with a geometric test.

As an example Suzuki et al. (2012) used
a combination of Hubble Space Telescope
and ground based data to constrain the value
of w based on type 1a Supernova, Baryonic
Acoustic Oscillations, Cosmic Microwave
Background, and Hubble Constant analysis.
For the case of constant w they found w =
−1.006+0.110

−0.113 for z < 0.5 and w = −0.69+0.80
−0.98

for 0.5 < z < 1.0 combining both statistical
and systematic errors. Strictly speaking these
bounds are on the order of 100 less restric-
tive than the restriction of w = −1+0.001

−0.001 found
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Fig. 3. Values of ∆µ/µ versus redshift for w0 = −1
and varying w1. The values of w1 are labeled in the
plot.

here, however, this is based on a hard limit on
ζµ > 4.0×10−6. At this point there is no appro-
priate statistical boundary on that limit.

4.1.2. Linear EoS models

For linear equations of state we use the sim-
ple equation 5 CPL formulation with just the
two parameters, the current value of w, w0 and
the slope w1. In Section 4.1.1 we saw that only
models with w0 very close to −1 satisfied the
constraints so in this section we set w0 = −1
and vary the value of w1 to test what range
of linear models satisfy the ∆µ/µ constraints.
We chose w1 values of 0.2, 0.1, 0.05 and 0.0052
with the last value the only one that satisfies all
of the constraints. Figure 3 shows the evolution
of ∆µ/µ. The net result is that only models with
very shallow slopes (w1 < 0.0052) and current
EOS values very near −1 satisfy the observa-
tional constraints on ∆µ/µ. We should note that
all of the linear EOS models that have present
day values of −1 and negative slopes in a are
crossing the phantom divide, w < −1, at the
present time. Those with positive slope have
been in the phantom space at earlier times. It
would appear that the parameter space for CPL
equations of state is extremely limited other
than the trivial case of w = −1.

Suzuki et al. (2012) also consider the case
of the CPL linear model and find that w0 =
−1.046+0.179

−0.170 and w1 = 0.14+0.60
−0.76. Again our

formal results suggest a much tighter bound

Fig. 4. Values of (w + 1) versus redshift for Model
1 with the future, w f , and past, wp, values labeled
on the plot. Note that the thawing model with w =

0.999 has a future (w + 1) value of 0.001 which is
not visible on the scale of this plot. All of the cases
have τ = 0.1 and at = 0.4.

on both w0 and w1 modulo the validity of the
lower bound on the coupling constant ζµ.

4.2. Freezing and Thawing equations of
state

Freezing equations of state start with an EOS
different from −1 and approach −1 at the
present time. Thawing equations of state start
with and EOS very close to −1 and diverge
from −1 at the present time. To investigate
the differences between the two types of EOS
forms we utilize Model 1 of DNT given by
equation 6. The model has four parameters, wp,
the value of w in the past, w f , the value of w
in the future, τ, the transition time, and at the
transition epoch. We chose a value of τ = 0.1
to make the transition fast enough to define to
regions with well defined asymptotic behavior.
The transition epoch is chosen as at = 0.4
which corresponds to a redshift of z = 1.5.
This produces a value of w very near −1 in the
present epoch for freezing equations of state.
Figure 4 shows the values of (w+1) versus red-
shift for a range of values of wp and w f . In all
of the cases we have set τ = 0.1 and at = 0.4.

It is fairly easy to see how the plots in
Figure 4 change as the parameters are varied.
Varying the transition epoch at moves the tran-
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Table 1. Observational constraints used in this analysis. References: (a) Wendt & Reimers (2008), (b) King
et al. (2009), (c) King et al. (2011), (d) Malec et al. (2010), (e) Bagdonaite et al. (2013), (f) Kanekar (2011)

Object Redshift ∆µ/µ error Acc. Ref.
Q0347-383 3.025 2.1 × 10−6 ±6. × 10−6 1σ (a)
Q0405-443 2.597 10.1 × 10−6 ±6.2 × 10−6 1σ (b)
Q0528-250 2.811 3.0 × 10−7 ±3.7 × 10−6 1σ (c)
J2123-005 2.059 5.6 × 10−6 ±6.2 × 10−6 1σ (d)
PKS1830-211 0.886 0.0 ±1.0 × 10−7 1σ (e)
B0218+357 0.685 0.0 ±3.6 × 10−7 3σ (f)

Fig. 5. Values of ∆µ/µ versus redshift for Model 1
with the future, w f , and past, wp, values labeled on
the plot. The plots labeled with w f values are the
thawing models shown in figure 4 and those labeled
with wp values are the freezing models.

sition region along the redshift axis and vary-
ing the transition time τ changes the steepness
of the transition.

We again use equation 2 and 4 to calculate
the evolution of µ with redshift or scale fac-
tor. Figure 5 shows the evolution of µ for the
parameters used in the EOS models shown in
Fig. 4. The evolution of µ shown in Figure 5
follows the expected trajectories with thawing
EoS models showing significantly more late
time evolution due to their present day devi-
ation from w = −1. Figure 6 shows that all of
the freezing models either meet the constraint
at z = 0.88582 or, in the case of wp = −0.7,
miss it by a very small amount. These models
make it clear that the current much looser con-
straints at high redshift from the optical obser-
vations allow significant early time evolution

Fig. 6. This is an expanded view of the late time µ
evolution shown in Figure 5 to show the detail of
the ∆µ/µ near the most restrictive constraint at z =

0.88582.

of w as long as the value of w approaches −1 by
a redshift of 1 or higher. We can say that thaw-
ing models with significant deviations from −1
are strongly disfavored. The looser constraints
at high redshift can not put the same condition
on freezing models. Consistent with the results
from the linear EoS models the thawing model
with a future value of w = −0.999 does meet
the low redshift constraint.

5. Conclusions

For a given value of the coupling the deviation
of µ or α depends on the amount of time, red-
shift or scale factor that w deviates from −1.
This feature strongly disfavors an EoS that has
a constant value not equal to −1 as this maxi-
mizes the amount of time at a value of w other
than −1. The current limit on a constant w is
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w = −1 ± 0.001 at the 3σ level. This is essen-
tially indistinguishable from −1 in geometric
tests. Similarly linear or CPL models are also
disfavored at a slightly lower level and are lim-
ited to slopes less than 0.005 for the case of
w0 = −1. Any value of w0 other than −1 is fur-
ther disfavored as the constant term also cre-
ates evolution of the constants.

The current data set places much more
stringent constraints on thawing models than
freezing models since fundamental constant
tests constrain the evolution during the time
between the observation and the present day
unlike geometric tests that constrain the evo-
lution that occurred before the observations.
Since the most stringent constraints are for ob-
servations at z < 1 thawing models with signif-
icant late time evolution are particularly lim-
ited by the data. Freezing models with most
of their evolution before the epoch of the ob-
servations are not as tightly constrained but it
would not be correct to declare either model as
more favored or disfavored but rather as less
or more constrained. All of the model 1 freez-
ing cases either satisfy or come very close to
satisfying the constraints even with past EoSs
quite deviant from −1. The only thawing model
1 to pass the test had the its final value of
w at w = −0.999 similar to the constant w
case. However, moving the transition epoch to
a later time would disqualify most of the freez-
ing models.

Modulo the uncertainty on the true lower
limit on | ζµ | the range of possible EoS mod-
els is significantly constrained by the limits on
the variation of µ. In particular the simple CPL
linear EoS model has a very limited range of
values which only accommodates slight devi-
ations from −1. At this point, except for the
reported change in the value of α by Webb et
al. (2011), the fundamental constant data are
consistent with a cosmological constant and
the standard model of physics. Higher accu-

racy measurements at high redshift will be par-
ticularly relevant for putting more significant
limits on EoS models in general and on partic-
ular cosmological models.
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